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down to 77 K. The appearance of the g3 tensor in the ESR 
spectrum is a result of the distribution of ruthenium isotopes of 
different nuclear spins in the complex and deserves further com­
ments. The observed hyperfine coupling which makes up 29.8% 
of the signal (sextet, A = 3.37 X 10"3 cm"1) is due to coupling 
to the 99Ru (/ = 5/2, 12.7%) and 101Ru (/ = 5/2, 17.1%) isotopes, 
and the remaining, more intense singlet results from that fraction 
of the complex that contains the other ruthenium isotopes (/ = 
0, 70.2%). 

Obviously, there remain many unanswered questions regarding 
the electronic structure of Ru2(dpf)4(C=CC6H5)2. A thorough 
investigation of the chemical, electrochemical, and spectroscopic 
properties of this complex as well as the synthesis of other Ru2

6+ 

complexes27 is under way. 
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(27) Rui(ap)4(C^CC6HOa has been synthesized by a modification of the 
procedure described in ref 21. The crystal structure and other properties are 
currently under investigation. 
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Piperidine rings are frequently encountered structural com­
ponents in alkaloid natural products. Recently, we have inves­
tigated an approach to functionalized cyclic amines via ammonium 
ylides. The Stevens rearrangement of ammonium ylides has often 
been the subject of mechanistic studies since its initial observation,1 

yet it has been only sporadically applied to organic synthesis.2 

Potential problems include competing Hofmann eliminations3 or 
Sommelet-Hauser rearrangements,4 as well as controllable gen­
eration of the ylide intermediate. However, we felt that the 
benefits of the reaction (successive formation of strategic car­
bon-nitrogen and carbon-carbon bonds) demanded a closer ex­
amination of its applicability to synthesis. 

An attractive method for direct generation of the requisite cyclic 
ylides involves rhodium(II)-catalyzed decomposition of diazo 
carbonyl compounds5 bearing dialkylamino substituents six centers 
away from the carbenoid center (eq I).6"8 Stevens [1,2]-shift 
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of one of the exocyclic groups would result in a new nitrogen 
heterocycle in which the carbenoid carbon had formally undergone 
insertion between N and R1. Although competing C-H insertion 
might be a concern in those cases where a five-centered transition 
state was accessible,9 we felt that the electron deficient carbenoid 
would preferentially react at the site of greatest electron density, 
the amino lone pair. We report here the successful implementation 
of this strategy and its utility in the synthesis of 2-substituted 
piperidin-3-ones. 

Rh2(OAc)4 

(cat.) CX 
R2 ' 

[1,2] 

The most convenient route to the desired substrates proved to 
be direct alkylation of secondary amines with 5-bromo-l-diazo-
2-pentanone (I)10 (Scheme I). In this way, diazo ketone sub­
strates 2a-f were prepared in 51-95% yield. Compound 2g was 
efficiently obtained from 2'-acetyl-Ar-benzyl-7V-methylbenzylamine 
via deacylative diazo transfer on the oxalacetyl derivative." 

Table I lists the results obtained from addition of compounds 
2a-g to a catalytic amount of Rh2(OAc)4 in dichloromethane. A 
major concern was the known high affinity of amines for the empty 
coordination sites on the dimeric catalyst.12 The only prior 
successful example of ammonium ylide generation from Rh-
carbenoids overcame this problem by use of extremely long ad­
dition times.5" In the event, substrates 2a-f gave good to excellent 
yields of the desired 3-piperidone [1,2]-shift products 3a-f without 
resort to high-dilution conditions or slow addition. Benzo-fused 
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Table I. Treatment of oj-dialkylaminodiazoketones with Rh2(OAc)4
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"Standard procedure: Substrates were dissolved in CH2Cl2 (0.05 M) and added dropwise by cannula to 3 mol % Rh2(OAc)4 in CH2Cl2 at room 
temperature over 0.5 h. After an additional 0.25 h, the reaction mixture was worked up and immediately chromatographed. 'Isolated yields after 
chromatography. Satisfactory IR, 1H and 13C NMR spectra, and combustion analysis or HRMS data were obtained for substrates 2a-g and their 
rearrangement products. 

substrate 2g gave a mixture of dihydroisoquinolone [1,2]-shift 
product 3g and C-H insertion product 6. 

Importantly, complete migrating group selectivity was seen in 
all cases, consistent with the expectation that the carbon with the 
best radical stabilizing substituent will migrate.13 As can be seen 
from the reaction of glycine derivative 2c, migration was not 
limited to benzylic groups. Substrate 2b, which proceeded through 
an W-ethylammonium ylide, showed no evidence of a',|S-frag-
mentation to generate ethylene and l-benzyl-3-piperidone.14 

Those cases involving substituted benzyl migrating groups actually 
showed a diminished yield of [1,2]-shift product, apparently due 
to a greater tendency for the presumed benzylic radical inter­
mediate7^13 to suffer escape from the solvent cage and undergo 
homocoupling to give 4d,e or reaction with oxygen to give 5. 
However, we were unable to isolate any of the corresponding 
bis(3-piperidone) dimers.15 

Despite the availability of a five-membered C-H insertion 
transition state to carbenoids derived from substrates 2a-f, 3-
aminocyclopentanones from this pathway were not observed.16 

The one exception was 2g, which gave 3-aminoindanone 6 as a 
substantial byproduct, perhaps due to enforced proximity resulting 
from ortho disposition of the benzylic methylene and the carbenoid. 
It should also be noted that none of the isomeric 2-aminoindanone 
which would derive from competing [1,2]-shift of the endocyclic 
benzyl carbon was seen. A comparable result observed by Ollis 
et al. when the same ylide was generated by quaternization/de-
protonationl7a was rationalized in terms of poor benzylic overlap 
with the incipient radical during endocyclic C-N homolysis. 

In summary, we have demonstrated that the overall sequence 
of rhodium-catalyzed carbenoid generation/ammonium ylide 
formation/Stevens [1,2]-shift utilizing acyclic 7-dialkylamino 
diazo carbonyl substrates can be applied to the synthesis of six-
membered nitrogen heterocycles in good to excellent yields. 
Starting materials are easily prepared in one step from secondary 
amines. The key step is exceedingly simple and does not require 
high-dilution conditions. The use of this transformation in the 

(13) Ollis, W. D.; Rey, M.; Sutherland, I. O. J. Chem. Soc., Perkin Trans. 
1 1983, 1009. 
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Perkin Trans. 1 1981, 1963. (b) For a recent study of related tetrahydro-
isoquinolinium ylides, see: Sato, Y.; Shirai, N.; Machida, Y.; Ito, E.; Yasui, 
T.; Kurono, Y.; Hatano, K. J. Org. Chem. 1992, 57, 6711. 

synthesis of alkaloid targets is currently being investigated and 
will be reported in due course. 
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Molecular separations, via the use of synthetic membranes, are 
beginning to yield new and more energy-efficient methods for 
chemical processing.2 Further advances in this area will require 
the creation of novel materials that exhibit high permeation se­
lectivity (permselectivity) and high permeation rates.3 We have 
previously outlined a strategy for the synthesis of perforated 
monolayers, based on the use of porous surfactants.4'5 We have 
also proposed that such assemblies could be used to construct 
composite membranes that distinguish permeants on the basis of 
their molecular size. Here, we provide experimental verification 
of this concept. Specifically, we describe the synthesis and per­
meation characteristics of Langmuir-Blodgett (LB) multilayers 

(1) Supported by the Division of Basic Energy Sciences and the Depart­
ment of Energy (DE-FG02-85ER-13403) and by Air Products and Chemicals, 
Inc., Allentown, PA. 

(2) Haggin, J. Chem. Eng. News 1990, October, 1, 22. 
(3) The United States Department of Energy Industrial Energy Program, 

Research and Development in Separation Technology, DOE Publication 
#DOE/NBM-8002773, 1987. 

0002-7863/93/1515-1178$04.00/0 © 1993 American Chemical Society 


